The Semantic Web
Ontology Development Using RDF and OWL

Hari Rajagopal
IBM Corporation
Contact Info

- Hari Rajagopal
 - harir@us.ibm.com
The World Wide Web – Quiz
The Web Today

- Estimated billion pieces of static information

- Constantly being
 - Searched by applications and people
 - Updated by people
 - Referred to by documents
 - Extracted from by humans
Problems?

- Keyword based searches bring up pure matches and miss out on context
- Human intervention is needed in order to summarize and integrate information from diverse sources
- Updating and refreshing of data is very complex, needs human intervention
- Machine readability is a major issue
Example

- Let us digress and do a search for a piece of information on the web

- Some are very specific, some are not
Some Definitions

- The web today is syntactic in nature

- Navigation, search and making sense of items is via links from resource to resource (hard links)
Today — Computers Can’t Do

- Linking, rationalization and adding meaning to data

➢ That has to be done by people, and then displayed and presented by computers (still glorified decision makers and rendering engines)
Metadata is the magic bullet !!!
What Is Metadata?

- Very clear in some contexts – Databases for instance (no pun intended)

- Not so clear in others

- The take home message – metadata is whatever is relevant to the domain
Or Not!

Some attempts at using metadata

- The `<meta>` tag in the HTML header
 - Applies to entire doc
 - Can’t scope to specific resources within it
 - Can do so using anchor tags, but non-standard
Information Representation

- Common language has been arrived at
 - XML and its derivatives
 - Structured, easily parsable

- Does this make it better understood?

- Or simply more interoperable?
The Semantic Web

- So, what is the Semantic web?

"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation." – Tim Berners-Lee
The Semantic Web (Continued)

What the Semantic web is NOT

- Artificial Intelligence
- Inference system
Within an Enterprise...

- XML needs schemas to mean something
 - Otherwise – basically config files, or EDI

- Schemas fill the gap here, sometimes
 - Across departments within an enterprise they don’t always align
 - Hence the need for an enterprise domain model
Schemas in Silos

Finance Div.

Finance App(s)

Applications Div.

Prod App(s)

Data Warehousing / analysis Dept.

Data Warehousing App(s)
Problems

- Issues with sharing schemas
 - Could be resolved using a common enterprise wide domain model
 - Might not work in a cross-enterprise fashion

- Issues with searching/usage due to lack of commonality
Problem at Hand

- People want to find meta-data about the subject of interest

- Whether it is a critique of a book, a tidbit of info about a specific dog breed or a flavor characteristic of a particular wine, it is the MetaData (data about data) that is of interest
What Would This Be Used For?

- Satisfy curiosity (book annotations)
- Find a pet (dog breed behaviour specifics)
- Monitor who’s checking out a book (FBI)
- List goes on...
Searching for Data

- The web has an incredible wealth of resources (note the term used here) that are accessible via URL(s)

- Most of these searches though are based on crawlers, robots, spiders and the like
- Not contextual data but text based data
- There are a couple of exceptions to this norm – Yahoo!
How Does Yahoo Work?

- The answer is ‘people power’ 😊

- People classify, categorize and rank resources and make them web accessible

- Akin to the monks of old sitting in a cathedral monastery copying and classifying books (see *The Name of the Rose* by Umberto Eco)
The Yahoo Cataloguer at Work
People Still Need…

- A way to represent the data

- A language to describe data items

- A means of linking the terms (vocabulary) of the language into meaningful relations
Any More Requirements?

- A system of machine-processable identifiers for identifying a subject, predicate, or object in a statement without any possibility of confusion with a similar-looking identifier that might be used by someone else on the Web.

- A machine-processable language for representing these statements and exchanging them between machines.
RDF

- Enter the Resource Description Framework
What Is RDF?

- The Resource Description Framework (RDF) is the W3C standard that is the foundation for the Semantic Web.

- It provides a way to describe metadata about information in an interoperable, machine-readable format.
What Is RDF? (Continued)

- RDF is simply a way of asserting facts using a vocabulary that is specified in XML schema.

- It facilitates assertion and processing of these facts in an automatable fashion (Machine processing vs Human readable).
Some Basics

- **Resources**
 - An entity that has a valid URI

- **Properties**
 - A Resource that has a name and can be used as a property

- **Statements**
 - An assertion linking the above together
Some Basics (Continued)

- Statements apply a value to a specific property of a resource

- For example:
 - In a web-ring for mastiff owners, the entry –
 - The Molosserworld website has a site address of http://www.moloss.com
 - The resource (Molosserworld website) has a property (URL) and a value for that (the HTTP address)
Some Basics (Continued)

- These map to the Subject, Object and predicate of formal logic.

- Here the Subject is the ‘link’, the predicate is ‘has URL address’ and the Object is a resource (could be a literal) with the website address (http://www.moloss.com)

- Note: the Object could be a string literal too
If an Object is to have properties of its own, then it needs to be a URI, otherwise it can be simply a string literal.

Bottom line – *Anything can be a resource*
RDF Has Rigor

- The above explanation of the assertion seems very loosely put

- RDF constrains it and imposes restrictions on it
 - The subject MUST be a resource
 - A resource in RDF terms boils down to a URI
 - Objects can be literals or resources themselves
Representation

- RDF is based on the principle of a 3-tuple
- Representation of a tuple:
 - (Resource, Property, Value)
 - Tuples from one model can be mapped to another, makes *Federation* of data possible

- Format for RDF is well known and understood, namely XML
 - So why not use XML itself, why another format?
XML – Pros and Cons

- XML is the obvious choice for Data Format for information exchange

- XML falls short in some respects:
 - Processing power needed for parsing
 - Scalability (processing tuples is much easier)
 - Order of elements is important

- Thus not the best choice for Metadata, but a great alphabet for writing it
XML – Pros and Cons (Continued)

- RDF data can be expressed using an XML syntax, allowing it to be passed over the Internet as a document and parsed using existing XML based software.

- Once again – XML is a great alphabet but has no meaning and does not represent relationships very well.
What does all this mean?
Scenario

Looking for Livestock Guardians

Hmm, don't have that, but have a set of dogs with a function = "Livestock guardians"

Here you go

Online pet finder
In the preceding example

- One source of data was queried by another
- The syntax used by the client was understood by the receiver
- The syntax was mapped to the receiver’s knowledge base
- A response was generated by combining knowledge representations
Case Study

- The AKC (Armenian Kennel Club) and the FCI (Federation Cynologie Internationale) want to collaborate and design a knowledge base for dog breeds.

- Must be searchable using loosely defined criteria, easily describable and accessible via the web (of course 😊).
Suppose we want to represent the following:

- A Pastor Abruzzi is a working dog from Italy that functions as a livestock guardian

We see the two resources immediately:
- Italy (there may be more info associated with it)
- Pastor Abruzzi (the specific breed of dog, Object)
A couple of predicates show up as well:

- Functions
- Native-to
- Working dog (maybe – as a boolean property)
Perspectives

- One could look at the problem from the angle of classifying dogs according to their function
- Another approach would be breed size
- A third might be the country of origin
 ➢ Any more??
World of Dogs

Italy has breed Pastor Abruzzi

- functions as livestock protector
- AKC classification working breeds
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://schemas.cssexample.org/rdfexample/"
 <rdf:Description about="http://schemas.cssexample.org/Italian-Breeds">
 <includes>
 <rdf:Description ID=""Pastor_Abruzzi">
 <AKC_classification>Working_Breed</AKC_classification>
 <function>Livestock_guardian</function>
 </rdf:Description>
 </includes>
 </rdf:Description>
</rdf:RDF>
Salient Points

- Note the use of rdf:RDF to wrap the statements
- Namespaces are key
- The subject is referred to by the URI ../Italian-Breeds
- The only predicate for this here is the <includes>
Salient Points (Continued)

- The object here (pastor-abruuzzi with a URI) acts as a subject and has predicates of its own:
 - Function
 - AKC-Classification

- Both of the values(objects) for these predicates are string literals
Ladies and Gentlemen,
What we have here is the basis of a model
Semantic Web Stack
Steps in Defining a Model

- Create the vocabulary using XML Schema
- Create the Syntax using RDF
- Create RDF triples that express the relationships
- Refine the above
- Enrich the model
Create vocabulary
car, motor, brake, chassis....

Define the syntax
1. Car has chassis
2. Chassis is-supported by axles
3. Axles have wheel bearings
4. Axles have brakes

Use model
Show me all items in inventory that have to do with brakes

Refine / Enrich
Steps in Creating a Model

- Identify a resource within the system
- Create a vocabulary
- Define properties for the system/domain
- Link resources to properties and their values
- Refine iteratively
Defining the Model

- Ontological definition – rules on top of the model

- Ontology – “An ontology is a specification of a conceptualization”

- A simpler definition – “representation of knowledge about a particular domain’
Schemas vs Ontologies

- XML schemas specify the alphabet for a vocabulary (RDF statements)

- Ontologies use that vocabulary and lay out grammatical rules and relationships

 - Analogous to the alphabet and a language
 - Can be represented as a collection of RDF-triples
Where Is RDF Used Today?

- RSS feeds
- Search engines
- Ontological searches and information cataloguing
- Online search engines are moving to metadata based searches
RSS

- RDF Syndicated Source
- Based on RDF
- Uses RDF syntax

- If it was plain XML w/o the RDF it would be much less topic specific and much harder to zone in on subjects (note the term 😊) of interest
Sample RDF from Craigslist.org

```xml
<rdf:RDF>
  - <channel rdf:about="http://www.craigslist.org/car/">
    - <title>
      craigslist | cars & trucks in san francisco bay area
    </title>
    <link>http://www.craigslist.org/car/</link>
    <description/>
    <dc:language>en-us</dc:language>
    <dc:rights>Copyright 2005, craigslist.org</dc:rights>
    <dc:publisher>webmaster@craigslist.org</dc:publisher>
    <dc:creator>webmaster@craigslist.org</dc:creator>
  - <dc:title>
    craigslist | cars & trucks in san francisco bay area
  </dc:title>
  <dc:type>Collection</dc:type>
  <syn:updatePeriod>hourly</syn:updatePeriod>
  <syn:updateFrequency>4</syn:updateFrequency>
  <syn:updateBase>1901-01-01T00:00+00:00</syn:updateBase>
  <dcterms:tableOfContents>http://www.craigslist.org/car/</dcterms:tableOfContents>
  <dcterms:isFormatOf>http://www.craigslist.org/car/</dcterms:isFormatOf>
  - <items>
    - <rdf:Seq>
    </rdf:Seq>
  </items>
</channel>
```
Sample RDF from Craigslist.org
(Continued)

- So, what’s the ‘dc:’ namespace prefix shown in the previous example?

- It refers to the Dublin Core group
 - An attempt at a common set of RDF terms
 - So, if we are talking about a ‘dog’ using dc:dog unmistakably tells us that it is a canine we are referring to and not Snoop Doggy...
Sample RDF from Craigslist.org (Continued)

```xml
<item rdf:about="http://www.craigslist.org/nby/car/94434486.html">
  <title>1955 Ford stepside (Santa Rosa) $3500</title>
  <link>http://www.craigslist.org/nby/car/94434486.html</link>
  <dc:rights>Copyright 2005, craigslist.org</dc:rights>
  <dc:language>en-us</dc:language>
  <dc:date>2005-08-30T16:22:48-07:00</dc:date>
  <dc:title>1955 Ford stepside (Santa Rosa) $3500</dc:title>
  <dc:type>text</dc:type>
  <dcterms:issued>2005-08-30T16:22:48-07:00</dcterms:issued>
</item>
```
Sample RDF from Craigslist.org

(Continued)

- This is how instead of the traditional robots and crawlers we can now have efficient syndication of content using the RDF based schemas available
- We can write an app to scrape craigslist for all Ford trucks that have a certain mileage and are located in a specific zone of California
Deeper into RDF

With RDF one can go a step further and define classes and subclasses to further enrich the model.

```
<rdfs:Class rdf:ID="carPart">
</rdfs:Class>
```
Case Study

www.myfurniture.com

- Capture knowledge base
 - Designer input
- Create Model vocabulary
- Create relationships
- Query model
- Refine model
Ontology Model

- An ontology model is an extension of the RDF model that provides extra capabilities for handling ontology data sources.

- Some terms are different:
 - Properties (*aka* predicates)
 - Individuals
 - Classes
Properties

Matthew livesIn England hasSibling Gemma
Ontology Languages

- If RDF can do all this, what more does an Ontology language offer?
 - Relationships among resources
 - Relationships between properties
 - Cardinality, Ordinal values, constraints
 - Based upon RDF as a foundation
Ontology Model Example

![Ontology Diagram]

- carPart
 - engine_part
 - electrical_part
 - body_part
 - hood
 - door
 - glass
Properties Have Sub-properties
DAML + OIL

- Early Ontology languages
 - DAML
 - OIL

- The W3C Web Ontology working group started with both of the above and arrived at a standard – OWL
OWL

- OWL (Web Ontology Language)

- 3 flavors
 - OWL full – rich and complex
 - OWL DL – allows for verification of model
 - OWL lite – rarely used, RDF preferred
Operations on Models

- Import of ontology models
- Merging of models
- Deriving inferences based on the above
Inferences

- Ontology + Reasoner = Inference

The result –

“indirect statements that may not be a direct fact in the original RDF graph”
Inference Expands the Graph

- Inferred graph
- Base graph(s)
- Ontology statements
Tools I Like to Use

- RDF Author
- JENA
- Protégé
Protégé Walk Through
JENA Overview
Tomorrow?

- True interoperability and extension of knowledge
 - Relationships and properties are stored in distinct repositories
 - At runtime these are brought together and knowledge is inferred from them
 - This differs from the common O-O paradigm where an object (or its class hierarchy) contains the information within itself
Questions?
Resources

- JENA download
 - http://jena.sourceforge.net

- Protégé web site
 - http://protege.stanford.edu
References

- http://www.w3.org/RDF/
- RDFGateway site
- Uche Obuji’s articles on the IBM developerworks site – http://www.ibm.com/developerworks